
47

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

A Drop-in Replacement for LR(1) Table-Driven Parsing

Michael Oudshoorn

Founding Dean, High Point University, School of Engineering

One University Parkway, High Point, NC 27268, USA

Email: {moudshoo@highpoint.edu}

ABSTRACT
This paper presents a construction method for a deterministic one-symbol look-
ahead LR parser which allows non-terminals in the parser look-ahead. This
effectively relaxes the requirement of parsing the reverse of the right-most
derivation of a string/sentence. This is achieved by replacing the deterministic push
down automata of LR parsing by a two-stack automata. The class of grammars
accepted by the two-stack parser properly contains the LR(k) grammars. Since the
modification to the table-driven LR parsing process is relatively minor and mostly
impacts the creation of the goto and action tables, a parser modified to adopt the
two-stack process should be comparable in size and performance to LR parsers.

Keywords: LR Parsing, Parsing Algorithm.

1. Introduction
The LR parser [1], characterized as a one-symbol look-ahead parser [2], is based on
a deterministic push-down automata (DPDA). A strength of this technique is that
the same parser engine can be used with parse tables generated by any of the
increasingly general LR(0), SLR(1), LALR(1) and LR(1) algorithms. Parsing is
limited to LR(1) by the parser mechanism. Although LR parsers accept the
deterministic context-free languages (DCFLs) [3, 4] some context-free grammars
(CFGs) for DCFLs require significant transformation before they can be used in LR
parser construction. Seite [5] observes that such transformations are tedious and
may reduce readability of the grammar, or generate a grammar that is not exactly
equivalent to the original. However, a parser generator accepting a wider class of
grammars evades many of these disadvantages by simply avoiding the need to
transform the grammar.

This paper discusses a one-symbol look-ahead parser employing two stacks as a
practical replacement for the LR parsing engine. The engine is based on a
deterministic two-stack machine [6] and other two-stack (bottom-up) parsers [3,

7, 8]. A parser construction method for the two-stack machine which produces
efficient, deterministic parsers for a broad class of grammars properly including
LR(k) grammars is presented. For non- LR(k) grammars, the parser can defer
parsing decisions while an arbitrary sequence of input symbols is processed.

Received on, 27 April 2021 - Accepted on, 10 July 2021 - Published on, 15 November 2021

48

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

Unbounded forward parsing activity is converted into non-terminals and is not
repeated. This allows the parsing of a class of non- LR(k) grammars using a single
(terminal or non-terminal) symbol look-ahead.

Without formal proof, it is asserted that the generated parsers preserve the
desirable properties of LR parsing, namely acceptance of a broad class of practical
grammars, error detection at the first invalid symbol (hence guaranteed
termination) [8] and O(n) parsing efficiency (both time and space).

Section 2 introduces the terminology and notation used throughout the paper.
Section 3 introduces an example that highlights some of the deficiencies of LR

parser construction. Section 4 examines the two-stack parsing process and
Section 5 presents the basic parser construction. Section 6 extends the parser
generator for increased generality Results are presented in Section 7 and
conclusions are offered in Section 8.

2. Terminology
Formally, a context-free grammar is a tuple G = N, T, P, S where N and T are
disjoint sets of, respectively, non-terminal and terminal symbols (hence N  T = ),
P is a finite set of productions, and S  N is the goal symbol. V = N  T is defined
as the vocabulary of the grammar. A production is a pair, written A  α, where
A  N and   V*. The following conventions are used in this paper:

 S, A, B, C …  N

 … X, Y, Z  V

 , ,  …  V*

 a, b, c, …  T

 … , x, y, z  T*

The notation, , represents an empty sequence and the length of a sequence  is
||, hence || = 0.

The relation , pronounced “directly produces”, is defined on V* such that
A   where A    P. The relation closures * and +, both pronounced
“produces”, are used to define the sentential forms, { | S * }, of the grammar
G including the (probably infinite) language generated, L(G) = {x | S + x}.

3. An exercise in parsing
Backus-Naur form (BNF) is a notation [9] describing the productions of a grammar.
BNF is a small language that provides parsing problems for conventional parsing
technologies.

The grammar G1 (Figure 1) is a natural syntax definition of BNF notation without
options in the right-hand side of productions. The language L(G1) = BNF is used

49

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

as the primary language example in this paper. In grammar G1, left recursion is used
to describe a non-empty sequence S of productions. Each production P is a
sequence n ::= R where R is a possibly empty sequence of terminal t and non-
terminal n symbols. A typical parsing system will distinguish terminal and non-
terminal symbols in a separate lexical analysis phase.

An attempt to build a LALR(1) or LR(1) parser from this grammar fails, reporting
a shift/reduce conflict. For some grammars, resolving such a conflict in favor of the
shift action effectively disambiguates the grammar [10]. This strategy fails to
produce a BNF parser based on G1 because G1 is not (suitably) ambiguous. BNF,
though not strictly a programming language, is a simple and relevant language
which shares characteristics with many computer languages. The failure of LR(1)
parser generation for G1 is disappointing given the expectations built up in the
literature:

 “Most unambiguous grammars for programming languages are SLR(1) –

hence LALR(1) and LR(1) – in the form in which they are originally

written.” [11]

 “This class of grammars [LR(1)] has great importance for compiler

design, since they are broad enough to include the syntax of almost all

programming languages, yet restrictive enough to have efficient parsers

that are essentially DPDA's.” [6]

 “Theoretically, LR(k) parsers are of interest in that they are the most

powerful class of deterministic bottom-up parsers using at most k look-

ahead symbols. … if a grammar, G, can be parsed by any deterministic

bottom-up parser using k look-ahead symbols, a LR(k) parser can be built

for G.” [12]

(1) S  S P

(2) S  P

(3) P  n ::= R

(4) R  

(5) R  R n

(6) R  R t

Figure 1. Numbered productions of grammar G1

More precisely, it is well known that all, and only, the deterministic CFL's have
LR(1) grammars [6] While parsers can be developed for a wide class of languages,
but they are not always based on a grammar that relates naturally to the semantics.
Knuth [4] made it clear from the start that:

“… LR(k) is a property of the grammar, not of the language alone. The

distinction between grammar and language is extremely important when semantics

is being considered as well as syntax.”

BNF is an example of such a language. BNF is a regular language (RL), so
L(G1) RL  DCFL and can be described by the equivalent regular expressions

50

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

in Figure 2. From the latter regular expression, G2  LR(1) where L(G1)  L(G2)

(see Figure 3) can be constructed.

(n ::= (n | t)*) +  n ::= (n | t)* (n ::= (n | t)*)*

  n ::= ((n | t)* n ::=)* (n | t)*

Figure 2. Regular expressions for BNF.

S  P R

P  n ::= | P R n ::=

R   | R n | R t

 Figure 3. Grammar G2  LR(1) and L(G2)  BNF.

The link between the syntax and the semantics of G2 is less obvious than with G1:
namely, each R is associated with the last n ::= in the preceding P. Grammar G2 is
arguably a less natural expression, albeit an equivalent, of the grammar for BNF.

A language designer may also alter the language as well as the grammar to suit a
class of parser generator, e.g. by adding terminators and/or separators [13, 14] as
in grammars G3a, G3b and G3c (Figure 4). This syntactic notation is reminiscent of
statement syntax in programming languages such as Algol-[9], C [15], Pascal [61],

Modula-2 [17], Modula-3 [18], Ada [19, 20], etc. It is also argued that such
notation aids error recovery and is simply good language design practice. Other
languages, e.g. BCPL [21] and Haskell [22, 23], adopt this solution but try to use
layout to mask the consequences.

 S  S ; P | P S  S P | P S  S semiopt

P  n ::= R P  n ::= R ; S  S ; P | P

R   | R n | R t R   | R n | R t P  n ::= R

 R   | R n | R t

 semiopt   | ;

 G3a: separator G3b: terminator G3c: separator/terminator

Figure 4. Grammars for BNF with terminators and/or separators.

Since G1 cannot be parsed using LR(1) parsers, the more general LR(k) techniques
can be considered. This immediately meets with success since G1LR(2). An
experienced language design could manipulate the grammar to produce grammar
G4a  LR(1) (Figure 5) by treating n ::= as the single lexical item, lhs. Alternatively,
using the forward context capabilities of a lexical analysis tool such as [42 , 25],

the symbol n followed by ::= can be distinguished from n followed by some other
symbol, before it reaches the parser.

51

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

A general parser generator could allow the separation of a language into lexical and
syntactic elements as a matter of style or taste rather than necessity. A
comparison of G4a with G2 suggests that the lexical/syntactic division can be
important in the preservation of semantic structure during grammar development.
Grammar G4b (Figure 5) for Algol-60 BNF BNF [9] is based on another
lexical/syntactic separation and is as “natural” as G1. Unfortunately, G4b is not
LR(2) nor even LR(k); from such a starting point, a lexical solution to the parsing
problem may be more difficult to discover.

The essence of this difficulty is that LR grammars have poor closure behavior under
homomorphism [26,6] and substitution with regular expressions. Syntactic
difficulties detected in parser generation can be treated as semantic issues or
transferred to the lexical analyzer. The limited capabilities of most lexical analyzers
and the increased costs (space and/or time) diminish the applicability of the latter
strategy. The two-stack parser generator presented in this paper is less sensitive
to this division of responsibility between the lexical analysis and parsing modules.

Grammars G5a and G5b (Figure 6) represents grammars that can be parsed with a
two-stack mechanism where L(G5a)  L(G5b)  BNF. LR(1) parser generators,
working exclusively with terminal-symbol look-ahead fail for G5a and G5b. With G5b,
the sequence R n can be derived from either R or R L resulting in a non-
deterministic parser. Further, the LR parser cannot reverse a derivation step,
P L  L ::= R L, as the trailing L would be overwritten in the parsing engine. This
illustrates the differences between LR parsing and the two-stack technique. By
using non-terminal look-ahead, the two-stack parser can reverse both G5b
derivation sequences:

1. P L ::= …  L ::= R L ::= …  L ::= R n ::= …

2. P …  ::= R …  L ::= R n …  L := R n n …

 S  P S | P S  S P | P

 P  n ::= R P  L ::= R

 R   | R n | R t R  | R n | R t

 L  n

 Grammar G5a Grammar G5b

Figure 6. BNF grammars for two-stack parsing.

 S  SP | P S  SP | P

 P  lhs R P  N ::=

 R   | R n | R t P  P N | Pt

 N  < C >

 C  c | C c

 Grammar G4a  LR(1). Grammar G4b  LR(k).

 Figure 5. Alternate syntax/lexical separations.

52

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

The technique described in Section 5 develops a parser using two-stack automata
via a construction generalized from LR parser generation. The parser generator
presented fails for G1, but succeeds for G5a, G5b and G6 (Figure 7). Each of these
grammars might be described as natural relative to G2. Grammar G6, like G4b, is a

BNF grammar without empty productions, and is the basis for the example two-
stack BNF parser developed in Sections 4 and 5.

(1) S  S P

(2) S  P

(3) P  n ::=

(4) P  P n

(5) P  P t

Figure 7. Grammar G6 with numbered productions.

The parser generator described below is more general than the LR(1) algorithm and
more practical than for the deterministic regular parsable (DRP) grammars [8]. The
two-stack parser is simpler than parsers for other developments from LR(1), e.g.

LR(k) and LR(k, t) [4], LRR [26, 5], LAR(m) [28] and DRP.. Figure 8 shows the
capabilities of the parsers for the BNF-describing grammars given above.

 G1 G2 G4a G4b G5a G5b G6

LR(1)  

LR(2)/LR(k)      

Two-stack      

Figure 8. Grammar class membership.

4. A Two-Stack Parser
The two-stack parser has a left-stack containing integer-subscripted symbols and
a right-stack containing symbols. The set of symbols, V, comes from a grammar and
the integers from the set, K, of node identifiers from the parser construction. The
stacks are delimited by a special  symbol and are illustrated below with stack-
tops toward the center.

The parser has four actions:

 Shift i where i  K, pops a symbol, X, from the right-stack and pushes

the subscripted symbol, Xi, into the left-stack. Pictorially:

left stack right stack left stack right stack

0 … Yj X   shift i  0 … Yj Xi  

 Reduce    pops , an annotated version of , from the left-stack

and pushes into the right-stack. The notation Reduce n + m is used for

Reduce A   where Pn = A   and m = ||, or simply Reduce n

when  =  (m = 0).

53

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

left stack right stack left stack right stack

0 … XI     reduce n + m  0 … X A   

 Accept causes successful termination.

 Error causes failure termination.

The parser uses the subscript and symbol at the top of the stacks to access the
parse table, a function PT: K × V  action, to determine the action to be taken at
each step. This table is represented with Error entries left blank, e.g. Figure 9
shows a parser table derived from grammar G6.

Node  n t ::= S P

0 S3 S2 S1
1 R2 S4 S5 R2
2 Acc S3 S6
3 S8
4 R4 R4 R4 S7 R4
5 R5 R5 R5 R5
6 R1 S4 S5 R1
7 R3 R3 R3 R1
8 R3 R3 R3

Figure 9. Parse table for grammar G6.

Initially, the left-stack holds the 0 symbol and the right-stack holds the input
string followed by the  marker. Valid input is accepted in a state where the left-
stack contains the goal symbol and the right-stack is empty.

 left stack right stack

 0 input  action …

 left stack right stack

  action  0 Si  Accept

With invalid input, the parser reaches an Error action. The complete sequence of
parser actions for a short string from L(G6) is shown in Figure 10.

Provided the left-stack is correctly conditioned for each reduce (as in LR parsing),
partial correctness of the parser can be shown by reverse induction. At termination,
the stacks contain a  delimited sentential form. Shift preserves a sentential form
in the stacks, hence it can be ignored. Reduce is effectively the inverse of ; a

reduce action resulting in a sentential form necessarily starts from a sentential
form. A successful parse, a sequence of shift and reduce actions terminating with

accept, must commence with a sentential form in the stacks. Responsibility for
ensuring that the parser moves forward from an accessible parser state rests with
the parser construction method.

54

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

left stack right stack action

0 n ::= n t n ::= n  Shift 3

0 n3 ::= n t n ::= n  Shift 8

0 n3 ::=7 n t n ::= n  Reduce 3

0 P n t n ::= n  Shift 1

0 P1 n t n ::= n  Shift 4

0 P1 n4 t n ::= n  Reduce 4

0 P t n ::= n  Shift 1

0 P1 t n ::= n  Shift 5

0 P1 t5 n ::= n  Reduce 5

0 P n ::= n  Shift 1

0 P1 n ::= n  Shift 4

0 P1 n4 ::= n  Shift 7

0 P1 n4 ::=7 n  Reduce 3

0 P1 P n  Reduce 2

0 S P n  Shift 2

0 S2 P n Shift 6

0 S2 P6 n  Shift 4

0 S2 P6 n4  Reduce 3

0 S2 P  Shift 6

0 S2 P6  Reduce 1

0 S  Shift 2

0 S2  Accept

Figure 10. Parsing n ::= n t n::= n with grammar G6.

5. Parse table construction
A parser is constructed from a grammar augmented with the parser symbols   T

and S  N used in a new production P0 = S   S  P. The following relations
based on the grammar are defined:
FRONT(A) = FRONT(A) = {X | A  X}

FRONT0(X) = {X}

FRONT() = 

FWD+() = {X |  + X}

FWD*() = {X |  * X}

 , k = 0

FIRSTk() = ,  =    = 

 x,  *   x  FIRSTk-1()

An item is a tuple <n, , , >, alternatively represented as A    ; , where
Pn = A    P,  = , and   V* is an element of a (finite) set of contexts.
Informally, an item reads: having found , look for  and (an initial segment of)
context  before reducing  to A. An initial item has the form A   ;  or

<n, , , > where Pn = A  . A final item has the form A   ;  or

<n, , , >. The construction described in this section maintains  = ; the
construction in Section 6 produces non-empty values of . Items with differing
contexts may be displayed as a group, i.e:
 A    ; , …, A    ;   A    ; , …, 

55

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

Initially, a directed graph (digraph) is constructed where nodes are sets of items
and edges are labelled with symbols. The nodes in the digraph are uniquely
numbered. The initial node is the singleton item set,
I0 = {S    S; }  {<0, , S, >}. The digraph for G6 is shown in Figure 11.

8

0

23

45

1

6

7

P

nt

::=
S

t n

n

n
::=

Figure 11. Digraph for grammar G6.

The parser table develops from the digraph. Each edge in the graph represents a
shift action in the table. The reduce and accept entries in the table are based on
the final items at a node. The node items for grammar G6 are shown in Figure 12.

5.1 Digraph Construction
Each node is uniquely numbered and represents a set of items similar to basis items
in LR parsing literature. The digraph is constructed by starting from node I0 and
constructing edges and nodes until the reachable nodes have been identified.

Node Node items

0 S    S; 

1 S  P ; , P , P n

 P  P  n; , P , P n, n, t

 P  P  t; , P , P n, n, t

2 S   S ; 

 S  S  P; , P , P n

3 P  n  ::=; , P , P n, n, t

4 P  n  ::=; , n, t

 P  P n ; , P , P n, n, t

5 P  P t ; , P , P n, n, t

6 S  S P ; , P , P n

 P  P  n; , P , P n, n, t

 P  P  t; , P , P n, n, t

7 P  n ::= ; , P , P n, n, t

8 P  n ::= ; , n, t

Figure 12. Item sets of nodes from grammar G6.

56

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

A node In has a (possibly empty) set of shift symbols, SS(In). Two groups of symbols
contribute to the shift symbols. Basic shift symbols, BS(In), are derived from non-
final items and are the symbols that must be shifted by the parser to progress
towards a reduce action. Reduce conflict symbols, RC(In), are symbols which lead
to multiple reduce entries, i.e. a reduce/reduce conflict, in an LR parser generation.
Two-stack parser construction treats these symbols as shift symbols.

In two-stack parsing, the symbols in RC(In) are shifted with the expectation that
the conflict will be resolved once a non-terminal is recognized. RC(In) is the set of
symbols which appear in more than one reduce symbol set for an item group,
RS(In, n, , ). Consider a node containing two final items, <i, , , >,

<i, , , >, <j, , , >  Ik, where  * X   Z … and  * Y   Z …. The
parser generator avoids potential parse table conflicts:

 {reduce i, reduce j}  PT(Ik, W)

 where W  FWD*(Z)  RS(Ik, i, , )  RS(Ik, j, , ))

 hence FWD*(Z)  RC(Ik)  SS(Ik)

As a result, items X   Z …;  and Y   Z …;  and their derivatives are
included in the node closure. The result is a parser which tries to recognize either X
or Y starting with Z. Having reduced X or Y onto the top of the right-stack, the
parser is able to decide between reduce i and reduce j.

The same strategy deals with conflicts between shift and reduce actions. The
presence of empty productions, productions of the form A   , in the grammar
requires that non-final items be included in the definition of RC.

 SS(In) = BS(In)  RC(In) - {}

 BS(In) = {FRONT*() | <i, , , >  Ii}

 RC(In) = {RS(In, i, , )  RS(In, j, , ) | <i, , ><j, , >

 RS(Ii, n, , ) = {FWD*( ) – FRONT*() | <n, , , >Ii}

Every digraph node has a labelled edge leaving it for each shift symbol associated

with that node, hence:

 Edges(In) = {<In, X, Next(In, X)> | X  SS(In)}

 Next(Ii, X) = {<n, , , > | <n, , X , >  Close(Ii)}

Each node has a (possibly empty) set of closure items. These are computed by
recursively extending the set of items that may be applicable in the (local) parsing
position represented by the node. A complete set of closure items is identified, prior
to the relevant items being selected, as this simplifies development of item
contexts.

57

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

 Close(In) = In  Relevant(SS(In), Derive+(In))

 Derive(Ii) =  CI(A, ), <n, , A, >  II   *     Context(, )

 CI(A, ), ), <n, , A, A>  II    * 

 CI(A, ) = {<n, , , > | Pn = A  }

 Context(, ) = ,  = 

  ,    =  b    N*  b  FIRST1()

 Relevant(R, Q) = i, i = A    X ;   Q  X  R

 i, i = X  ;   Q  X  R

The Derive function adds initial items which may be applicable in the parsing
position represented by an item set Ii. Closure items derive from all non-terminals
immediately proceeded by the mark () in the remaining item right-hand sides and
contexts. Once these items, with their contexts, have been derived, Relevant items
are selected. Final items lead to reduce entries in the parse table (see below), non-
final items contribute to the items of other nodes (via Next in the edge
construction). Figure 13 shows the digraph construction for grammar G6. Figure 14
shows a computed closure for node I1 of grammar G6 and indicates which items
are relevant to parser construction.

For a given grammar, the set of possible items is finite since all items

A     ;  a are constructed from a finite production A     P where P is
a finite set, and a m-bounded context  a V* ×T where

|| < m = max{|| | A    P}. Since the items are finite, the nodes are finite and
a finite algorithm for digraph construction exists.

5.2 Filling the Parse Table
Parser generation is completed by filling in the parse table, PT. A table entry is
determined for each node Ii and symbol X.

 Shift j, <Ii, X, Ij>  Edges(Ii)

PT(Ii, X) = Reduce n + |, <n, , , X >  Close(Ii)

 Reduce n + |, X  RS(Ii, n, ) - SS(Ii)

RS(Ii, n, ) = {FWD+() | <n, , , >  Close(Ii)}

The single instance of Reduce 0 (at PT(Next(0, S), ) in the table) is replaced with

Accept. This is consistent with the previous definition of Accept for the two-stack
parser. Undefined entries are interpreted as Error. A table with at most one entry

58

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

in each table position is a deterministic parser. This is the case for a significant
class of grammars including LR(1) as is shown informally in Section 6.

Node Node items Closure items Edges

0 S    S;  S   S P; , P , P n <0, P, 1>

 S   P; , P , P n <0, S, 2>

 P   n ::=; , P , P n, n, t <0, n, 3>

 P   P n; , P , P n, n, t

 P  P t; , P , P n, n, t

1 S  P ; , P , P n P  n ::=; , n, t <1, n, 4>

 P  P  n; , P , P n, n, t <1, t, 5>

 P  P  t; , P , P n, n, t

2 S S ;  P   n::=; , P , P n, n, t <2, n, 3>

 S  S  P; , P , P n P   P n; , P , P n, n, t <2, P, 6>

 P   P t; , P , P n, n, t

3 P  n  ::=; , P , P n, n, t <3, ::=, 8>

4 P  n  ::=; , n, t <4, ::=, 7>

 P  P n ; , P , P n, n, t

5 P  P t ; , P , P n, n, t

6 S  S P ; , P , P n P   n::=; , n, t <6, n, 4>

 P  P  n; , P , P n, n, t <4, t, 5>

 P  P  t; , P , P n, n, t

7 P  n ::= ; , P , P n, n, t

8 P  n ::= ; , n, t

Figure 13. Digraph and closure from grammar G6.

 Items Relevant

node I1 S  P ;, P , P n

 P  P  n; , P , P n, n, t

 P  P  t; , P , P n, n, t

Derive(I1) P  n ::=; , n 

 P   P n;, n

 P   P t; , n

 P   n ::=; t 

Figure 14. Closure construction for grammar G6, node I1.

59

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

6. Extended two-stack parsing: using linear backup
The parser generator above will fail to produce a deterministic parser when a node
contains items such that:

 A    ; 

 C    ; X 

where  * X …. The algorithm fails with a shift/reduce conflict when  + X …

and a reduce/reduce conflict when  = X ….

This occurs in grammar G7a (Figure 15), a LR(0, 2) grammar [4]. The basic two-stack
parser generator, described in Section 5, produces a parser (Figure 16) from the
modified G7b grammar. The grammar transformation from G7a to G7b introduces a
form of backup. The amount of backup introduced is proportional to the length of
the input so parsing remains efficient.

When applicable, a comparable transformation is performed automatically by the
parser generator. The following modification to the parser generator adheres to the

Node  a b c d S A B C C1 C2

0 S4 S3 S1 S2

1 S7 S5 S6

2 S10 S8 S9

3 Acc

4 S12 S11 R3 R4

5 S13 R7

6 S14

7 R6 R6

8 S15 R8

9 S16

10 R6 R6

11 S17 R7 R8

12 R6 R6 R6

13 R5 R5

14 R1

15 R5 R5

16 R2

17 R5 R5 R5

Figure 16. Parser table for grammar G7b.

 S  A C c | B C d S  A C1 c | B C2 d

 A  a A a

 B  a B a

 C  C b | b C C b | b

 C1  C

 C2  C

 Grammar G7a Grammar G7b

Figure 15. LR(0, 2) grammars.

60

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

policy of extending node closure allowing the parser to shift conflicting symbols
until additional input indicates which reduce action is appropriate.

For grammar G7a, immediate context is insufficient information on which to base
parsing decisions. With extended context, a decision can be reached. The primary
change to the parser generator is the additional Extend step in the new closure
construction. By replacing Close with Close in Next, a parse table (Figure 17) can
be constructed.

 Close(In) = {Extend(i, SS(In)) | i  Close(In)}

 Extend(i, SS) = AX    X; , i = A   ; X  XSS

 i, otherwise

Figure 18 shows the nodes and the closure for the digraph nodes where Extend has
an impact. Though this mechanism may introduce items which appear to be context
sensitive, all the reduce actions are based on the context free rules of the grammar.
The generator uses items with extended context to develop determinism during
parsing.

This construction may produce redundant or unreachable nodes, e.g. nodes 6, 8, 11
and 13 in Figure 17 cannot be used since a sequence of b's will have already been
recognized as (or reduced to) a C when the parser reaches nodes 1, 2, 5 and 7. The
set of items constructed by Extend is finite since each item <n, , , >

introduced by Derive can be Extended to at most || different items. Combined with
node merging, this construction produces parsers comparable to other published
techniques [29].

Node  a b c d S A B C

0 S4 S3 S1 S2

1 S6 S5

2 S8 S7

3 Acc

4 S10 S9

5 S11 S12

6 R6 R6

7 S13 S14

8 R6 R6

9 S15 R3+1 R4+1

10 R6 R6 R6

11 R5 R5

12 R1

13 R5 R5

14 R2

15 R5 R5 R5

Figure 17. Parse table from grammar G7a.

61

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

 7. Discussion

The parser construction technique described above is more complex than LR
parser construction. Extra effort goes into constructing items, some of which
eventually lead to non-terminal look-ahead in the parser, while others are not
Relevant and are subsequently discarded. The closure items in nodes 1 and 6 of
Figure 12 are examples of items that lead to non-terminal look-ahead.

The result of this extra work is the ability to resolve some of the conflicts that arise
in LR parser generation. While the amount of effort has not yet been quantified.,
the overhead is anticipated to be relatively small in general and the method is
expected to be practical.

7.1 Other Example Languages
Grammar G8a (Figure 19) is a relatively natural grammar which defines a series of
data records with option fields. A parse table and its derivation from G8a are shown
in Figures 20 and 21, respectively. Like BNF, L(G8a) is a regular language, and hence
a DCFL. In practice, the language is usually changed for LR parsing: either using
a field terminator (rather than an initiator), or adding semantic constraints to an
unordered syntax. Grammars G8b and G8c (Figure 19) are LR grammars for this
language.

S   | S R S  | S R S   | S R

R  hdr f1 f2 f3 R  hdr F1 R  hdr | F1 | F2 | F3

f1   | sep data1 F1  F2 | sep data1 F2 F1  hdr sep data1

f2   | sep data2 F2  F2 | sep data2 F3 F2  hdr sep data2 | F1 sep data2

f3   | sep data3 F3   | sep data3 F3  hdr sep data3 | F1 sep data3 | F2 sep data3

Grammar G8a Grammar G8b Grammar G8c

Figure 19. Syntax records with optional fields.

Node Items Close

4 A  a ;C c A C  a  C; c

 B  a ;C d A C  a  C; d

 C   C b; b, c, d

 C   b; b, c, d

9 A C a C ; c A C  a C ;c

 B C a C ;d B C  a C ; d

 C  C  b; b, c, d C C  b; b, c, d

Figure 18. Close for selected nodes from the G7a digraph.

62

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

Node Node items Closure items

0 S S;  S ; , R , R hdr

 S   S R; , R , R hdr

1 SS ;  R   hdr f1 f2 f3; , R , R hdr

 S  S  R; , R , R hdr

2 S  S R ; , R , R hdr

3 R  hdr  f1 f2 f3; , R , R hdr f1 ; f2 f3 , f2 f3 hdr

 f1  sep data1; f2 f3 , f2 f3 hdr

 f2  sep data2; f3 , f3 hdr

 f3  sep data3; , R , R hdr

4 R  hdr f1  f2 f3; , R , R hdr f2 ; f3 , f3 hdr

 f2  sep data2; f3 , f3 hdr

 f3  sep data3; , R , R hdr

5 f1  sep  data1; f2 f3 , f2 f3 hdr

 f2  sep  data2; f3 , f3 hdr

 f3  sep  data3; , R , R hdr

6 R  hdr f1 f2  f3; , R , R hdr f3 ; , R , R hdr

 f3  sep data3; , R , R hdr

7 f2  sep  data2; f3 , f3 hdr

 f3  sep  data3; , R , R hdr

8 f1  sep data1 ; f2 f3 , f2 f3 hdr

9 f2  sep data2 ; f3 , f3 hdr

10 f3  sep data3 ;, R , R hdr

11 R  hdr f1 f2 f3 .;, R , R hdr

12 f3  sep  data3; , R , R hdr

Figure 21. Nodes and items for grammar G8a.

Node  sep hdr data1 data2 data3 S R f1 f2 f3

0 R1 R1 S1 R1

1 Acc S3 S2

2 R2 R2 R2

3 R4 S5 R4 S4 R4 R4

4 R6 S7 R6 S6 R6

5 S8 S9 S10

6 R8 S12 R8 R8 S11

7 S9 S10

8 R5 R5 R5 R5 R5

9 R7 R7 R7 R7

10 R9 R9 R9

11 R3 R3 R3

12 S10

Figure 20. Parse table for grammar G8a.

63

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

Grammar G9 (Figure 22) describes BNF for context sensitive grammars (CSGs),

where each rule is expected to start on a new line. This use of layout in the syntax
of a language often leads to parsing problems.

S   | S R

R  LHS ::= RHS eol

LHS  SS

RHS  SSopt | RHS eol SSopt

SS  id | SS id

SSopt   | SS

Figure 22. Grammar G9. BNF with layout for CSG productions.

A final example is drawn from compiler construction. In (revised) Pascal [16]
statements are separated or terminated by semi-colons and if statements
complicate the syntax by having optional else parts. Grammar G10a (Figure 23) is a
stylized unambiguous grammar describing this syntax. Inexperienced programmers
may have problems learning where to put semi-colons in Pascal so a parser based
on G10b is more useful in a practical compiler.

The error productions present problems for the LR parser generators but are
acceptable to the two-stack parser generator. Figure 24 shows the number of
states/nodes in parsers based on these grammars.

7.2 Choosing a Context Construction
The design of function Context determines the grammar class producing
deterministic parsers based on the above parser construction. Our goal is to
develop a terminating parser generator for a broad and decidable class of
grammars. Since membership of LR(k), LRR and DRP are all undecidable,

Parser G7a G7b G8a G8b G8c G9 G10b G10a

LALR(1) - - - 15 16 - 19 -

Two-stack - 18 13 15 16 18 33 37

Extended two-stack 16 18 13 15 16 18 33 37

Figure 24. Parser state/node size.

 BS  begin SL sopt end BS  begin SL sopt end

 SL  ST | SL semi ST SL  ST | SL sreq ST

 ST  MS | US ST  MS | US

 MS  stmt | BS | if MS else MS MS  stmt | BS | if MS serr else MS

 US  if ST | if MS else US US  if ST | if MS serr else US

 sopt  semi |  sopt  semi | 

 sreq  semi | 

 serr   | semi

 Grammar G10a Grammar G10b

Figure 23. Stylized Pascal syntax.

64

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

considerable care is required. Informally, the context construction above has the
required properties:

 item contexts at a node include contexts for LR items and states reached via
the same symbols sequence;

 no context produces an empty string;
 the set of contexts is (practically) finite.

Other context constructions were considered and discarded. These are outlined in
Figure 25.

Others have used or considered non-terminals in the look-ahead during parser
construction. The LR(k) construction of Ancona et. al [30] is of considerable
interest and deserves further investigation.

Parser generation can be extended using other context constructions. Parsers
construction can use restricted regular expressions in item contexts. Closure for a
left recursive symbols is treated specially, i.e. when A + A  via rules A  A 

and A   then Derive(Ii) where B     A    Ii, contains the items:

 A    A ; * 

 A    ;  * 

where   Context(, ). When  * , the grammar is ambiguous so parser
construction will fail. The function Next in the Edge construction is extended to
treat a compound context as an equivalent item group:

 A   ;( | … | )* 

  A   ;,  ( | … | )* ,…,  ( | … | )* 

In the digraph construction for grammar G1 (Figure 26), node 6 includes the final
item P  n ::= R ; P*  which is interpreted as the equivalent item groups:

Context construction Problems

Context(, ) =  infinite contexts and/or nodes

Context(, ) =
,  =  when  +  may not include

LR(1) , otherwise

Context( , X ) =  X
when  X +  may not include

LR(1)

FOLLOW
error detection may be delayed

(works for G1)

Context( , ) =
,  =  too many nodes and little

advantage over the Context
function presented in Section 5.1  x, x  FIRST1()

Contextk(, ) =
,  =  too many nodes (but includes

LR(k))  x, x  FIRSTk()

Figure 25. Alternative item context constructions.

65

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

 P  n ::= R ; P* 

  P  n ::= R ;, P+   

  P  n ::= R ;, P P* 

The Closure items for node 6 include (the Relevant part of)

CI(P, P* ) = {P   n ::= R; P*  since n  SS(I6). The resulting parse table is
shown in Figure 27.

Node  n t ::= S P R

0 S3 S1 S2

1 Acc S3 S3

2 R2 R2 R2

3 S5

4 R1 R1 R1

5 R4 R4 R4 S6

6 R3 S7 S8 R3

7 R5 R5 R5 S5 R5

8 R6 R6 R6 R6

Figure 27. Parser table for grammar G1.

A parser created in this manner may use a large stack during parsing. Replacing the
grammar rule A  A with a rule A  A (e.g. G1 becomes G5b) may achieve the
same result and has the advantage of requiring an implementation choice with the
acceptance of its consequences.

The use of regular expression in item contexts relates to LRR parsing [26]. The
basic technique described here is not regarded as sufficiently general to justify
implementation. Several extensions are under investigation.

 Node Node items Closure items Edges

0 S S;  S  S P; P*  <0, S, 1>

 S  P; P*  <0, P, 2>

 P  n ::=R; P*  <0, n, 3>

1 SS ;  P  N ::= R; P*  <1, P, 4>

 S  S  P; P*  <1, n, 3>

2 S  P ; P* 

3 P  n  ::= R; P*   <3, ::=, 5>

4 S  S P ;P* 

5 P  n ::=  R; P*  R ; P* , n, t <5, R, 6>

 R  R n; P* , n, t

 R  R t; P* , n, t

6 P  n ::=R ;P*  P . N ::=R; P*  <6, n, 7>

 R  R  n; P* , n, t <6, t, 8>

 R  R  t; P* , n, t

7 R  R n ; P* , n, t <7, ::=, 5>

 P  n  ::=R; P* 

8 R  R t ; P* , n, t

Figure 26. Digraph construction for grammar G1.

66

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

7.3 Parser Generator Performance
Initial tests with small near- LR(1) grammars produced parsers comparable in size,
i.e. number of states/nodes and number of table entries, to LR parsers. The parser
produced for G8a is smaller than a LR parser for the same language. In the observed
cases, the technique appears to scale better than LR(k).

Practical parsers can be produced by adapting optimization techniques developed
for LR parsing [31]. Practical LALR(1) construction can merge compatible LR(1)

nodes during [32] or after [1] parser construction. The parse table for G6 (Figure 9)
can be compacted by creating a default reduce action for relevant nodes (i.e. all
except 0, 2, 3) then merging nodes 7 and 8.

The controlled use of ambiguous grammars [10] allows small and efficient parsers
to be constructed from compact language specifications. This technique, like the
elimination of (semantically null) unit productions, appears to be applicable in two-
stack parsing.

There is no problem with a parser generator producing a full LR(1) parser before
merging states. Holub [32] indicates that the primary disadvantage of an LR(1) state
machine is that is is typically twice the size of a corresponding LR(0) machine.
Spector [33] points out that minimal-state full LR(1) tables are not significantly
larger than LALR(1) tables but does not address the issue of whether the class
of LR(1) grammars is practically larger than the LALR(1) grammars. Language
designers tend to target LALR(1) acceptability rather than LR(1) parsers. Recent
work by McPeak [34] and Chen and Pager [35] explores the effective
implementation of LR(1) parsers and addresses the concerns noted earlier.

The two-stack parser generator needs “correct” context information in the items of
a node so that it can avoid shifting error (terminal) symbols. The avoidance of node
merging during parser generation is a simple (perhaps conservative) way to ensure
the preservation of the valid prefix property in the parser.

7.4 Processing and Grammars
LR(1) grammars have special properties in the two-stack parser construction. The
following function maps each digraph node In to a LR(1) state:
 State(In) = {A    ;  | A    ;   In  FIRST1()}

For each digraph node In, it is necessary that:
 BS(In)  RS(In) = RC(In) = 

or the corresponding LR(1) state is inadequate. Two-stack closure and edge
construction, working on LR(1) item sets, produce the same result as the
corresponding LR(1) constructions.

For a LR(1) grammar, the terminal symbols associated with a particular reduce
action at a node are the same as the LR(1) parser symbols at the corresponding

S   | S R

R  LHS ::= RHS eol

LHS  SS

RHS  SSopt | RHS eol SSopt

SS  id | SS id

SSopt   | SS
Figure 22. Grammar G9 BNF with layout for CSG productions.

67

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

“state”. The two-stack parser construction produces extra reduce table entries
where the LR(1) parser says “don't care” and this may produce extra nodes.
Merging compatible nodes produces a parser with the same number of
states/nodes. Typically, these extra entries allow a two-stack parser based on a
LR(1) grammar to recognize any sentential form thus are applicable in incremental
parsing [27].

The two-stack construction algorithm is converted to LR(k) parser construction by

replacing the Context function with the simpler Context  = FIRSTk The
Contextk function mentioned in Section 7.2 lets the parser generator cover LR(k) in
the same way as LR(1) is covered by the algorithm in Sections 5 and 6.

8. Conclusions
The two-stack parser can be regarded as a “drop-in replacement” for the LR
parsing engine. Using LR(0), SLR(1), LALR(1) or LR(1)tables, the size and
performance of the two parsing algorithms are the same. The two-stack parser has
the advantage that it can be used with parse tables developed from a wider class
of grammars.

The outline above shows that the LR(1)grammars, and their subclasses, are
included in the class of grammars accepted by this two-stack parser generator.
Given a LR(1)grammar, there is little advantage in using the two- stack parser
generator. Given a non- LR(1)grammar, this parser generator can help in several
ways. Most obviously, this generator could produce the tables for a practical
parser. Alternatively, by preserving non-terminals in the item contexts, the
generator may provide better diagnostic support for grammar manipulation. This

parser construction extends the class of grammars for which efficient one-symbol
look-ahead parsers can be constructed and provides an alternative to LR(k) when
LR(1) proves inadequate.

The error handling capabilities of the parser and the parser generator deserve
investigation. The error recovery mechanism used in YACC [13, 25] can be built
into the two-stack parser, and the ability of the parser generator to resolve LR
parser conflicts arising with grammars augmented for error handling can only be
beneficial. More predictable error handling may be achieved through specific
support in the parser generator.

An unoptimized parser table accepts many sentential forms as input. This property
is expected to prove practical in incremental parsing/compiling, language sensitive
editing or anywhere a parser could find non-terminals in its input [27].

The formal properties of grammar classes associated with the parser generator
need to be identified, e.g. context and closure mechanisms described above
construct parsers for a class of grammars properly including LR(k) for a given k.

68

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

Different context structures and closure mechanisms characterize different
grammar classes.

9. REFERENCES
(1) Aho, A.V. and Johnson, S.C., “LR Parsing,” Computing Surveys, 6(2):99-124,

June 1974.
(2) DeRemer, F. and Pennello, T., “Efficient Computation of LALR(1) Look-Ahead

Sets”, ACM Transactions on Programming Languages and Systems, 4(4):615-
649, October 1982.

(3) Aho, A.V. and Ullman, J.D., The Theory of Parsing, Translation and Compiling,
Volume. 1, Prentice-Hall, Englewood Cliffs, N.J., 1972.

(4) Knuth, D.E., “On the Translation of Languages From Left to Right”, Information
and Control, 8(6):607-639, 1965.

(5) Seite, B., “A YACC Extension for LRR Grammar Parsing”, Theoretical Computer
Science, 52:91-143, 1987.

(6) Hopcroft, J.E. and Ullman, J.D., Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, 1979.

(7) Harris, L.A., “SLR(1) and LALR(1) Parsing for Unrestricted Grammars”, Acta
Informatica, 24:191-209, 1987.

(8) Turnbull, C.J.M. and Lee, E.S., “Generalized Deterministic Left to Right Parsing”,
Acta Informatica, 12:187-207, 1979.

(9) Naur, P., (ed), “Report on the Algorithmic Language ALGOL 60”,
Communications of the ACM, 3(5):299-314, 1960. Revised in Communications
of the ACM, 6:1-20, 1963.

(10) Aho, A.V., Lam, M., Sethi, R., and Ullman, J.D., Compilers: Principles, Techniques
and Tools, 2nd edition, Addison-Wesley, 2006.

(11) Horning, J.J., “LR Grammars and Analyzers” in Compiler Construction, an
Advanced Course, 2nd edition, F. L. Bauer and J. Eikel (eds), pp. 85-107,
Springer,1976.

(12) Horning, J.J., “LR Grammars and Analyzers” in Compiler Construction, an
Advanced Course, 2nd edition, F. L. Bauer and J. Eikel (eds), pp. 85-107,
Springer,1976.

(13) Johnson, S.C., “YACC: Yet Another Compiler-Compiler”, Computer Science
Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.

(14) Wirth, N., “What Can we do About the Unnecessary Diversity of Notation for
Syntactic Definitions”, Communications of the ACM, 20(11):822-823,
November 1977.

(15) Kernighan, B.W. and Ritchie, D.M., The C Programming Language, 2nd edition,
Prentice-Hall, Englewood Cliffs, N.J., 1988.

(16) Jensen, K. and Wirth, N., “Pascal – User Manual and Report”, 2nd edition,
Lecture Notes in Computer Science No. 18, Springer, New York, 1975.

(17) Wirth, N., Programming in Modula-2, 2nd edition, Springer-Verlag, New York,
3rd edition, 1985.

69

 Journal of Advances in Computing and Engineering (ACE) Volume 1, Issue 2, December 2021 - ISSN 2735-5985

http://dx.doi.org/10.21622/ACE.2021.01.2. 40 7

http://apc.aast.edu

(18) Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B. and Nelson, G.,
“Modula-3 Language Definition”, ACM SIGPLAN Notices, 27(8):42-82, 1992.

(19) Barnes, J.G.P., Programming in Ada 2012, Cambridge, Cambridge Press, 2014.
(20) Taft, S. Tucker. et al. Ada 2012 Reference Manual. Language and Standard

Libraries International Standard ISO/IEC 8652/2012 (E) . 1st ed. 2013. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. Web.

(21) Richards, M. and Whitby-Strevens, C., BCPL - the Language and its Compiler,
Cambridge University Press, 1981.

(22) Hudak, P., Jones, S.P., and Wadler, P.L., (eds), “Report on the Functional
Programming Language Haskell, version 1.2”, ACM SIGPLAN Notices, 27(5),
May 1992.

(23) Marlow, S., et al. Haskell 2010 Language Report, Available online
http://www.haskell/org/(May 2011), 2010.

(24) Lesk, M.E. and Schmidt, E., “Lex-a Lexical Analyzer Generator” in UNIX
Programmer's Manual 2, AT&T Bell Labs., Murray Hill, N.J., 1975.

(25) Mason, T. and Brown, D. Lex & Yacc, O’Reilly & Associates, 1990.
(26) Culik, K. and Cohen, R., “LR-Regular Grammars – an Extension of LR(k)

Grammars”, Computer and System Science, 7:66-96, 1973.
(27) DeRemer, F.L., “Simple LR(k) Grammars”, Communications of the ACM,

14(7):453-460, July 1971.
(28) Bermudez, M.E. and Schimpf, K.M., “A Practical Arbitrary Look-Ahead LR

Parsing Technique”, ACM SIGPLAN Notices, 21(7):136-144, July 1986.
(29) Harford, A.G., Heuring, V.P., and Main, M. G., “A New Parsing Method for Non-

LR(1) Grammars”, Software – Practice and Experience, 22(5):419-437, Wiley,
May 1992.

(30) Ancona, M., Dodero, G., Gianuzzi, V., and Morgavi, M., “Efficient Construction
of LR(k) States and Tables”, ACM Transactions on Programming Languages
and Systems, 13(1)150-178, January 1991.

(31) Sippu, S. and Soisalon-Soininen, E., Parsing Theory, Volume II: LR(k) and LL(k)
Parsing, Springer, Berlin, 1990.

(32) Holub, A.I., Compiler Design in C, Prentice-Hall, Englewood Cliffs, N.J., 1990.
(33) Spector,D., “Efficient Full LR(1) Parser Generation”, SIGPLAN Notices,

23(12):143-150, December 1988.
(34) McPeak, S., and Necula, G. C. “Elkhound: A fast, practical GLR parser

generator.” Proceedings of Compiler Construction, pp. 73-88, 2004. Retrieved
from https://escholarship.org/uc/item/8559j464.

(35) Chen, X. and Pager, D.. “Full LR(1) Parser Generator Hyacc and Study on the
Performance of LR(1) algorithms”. In Proceedings of The Fourth International
C* Conference on Computer Science and Software Engineering (C3S2E '11).
Association for Computing Machinery, New York, NY, USA, 83–92, 2011.

https://escholarship.org/uc/item/8559j464

