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ABSTRACT 
This paper presents a construction method for a deterministic one-symbol look-
ahead LR parser which allows non-terminals in the parser look-ahead. This 
effectively relaxes the requirement of parsing the reverse of the right-most 
derivation of a string/sentence. This is achieved by replacing the deterministic push 
down automata of LR parsing by a two-stack automata. The class of grammars 
accepted by the two-stack parser properly contains the LR(k) grammars. Since the 
modification to the table-driven LR parsing process is relatively minor and mostly 
impacts the creation of the goto and action tables, a parser modified to adopt the 
two-stack process should be comparable in size and performance to LR parsers. 

Keywords: LR Parsing, Parsing Algorithm. 

1. Introduction
The LR parser [1], characterized as a one-symbol look-ahead parser [2], is based on 
a deterministic push-down automata (DPDA). A strength of this technique is that 
the same parser engine can be used with parse tables generated by any of the 
increasingly general LR(0), SLR(1), LALR(1) and LR(1) algorithms. Parsing is 
limited to LR(1) by the parser mechanism. Although LR parsers accept the 
deterministic context-free languages (DCFLs) [3, 4] some context-free grammars 
(CFGs) for DCFLs require significant transformation before they can be used in LR 
parser construction. Seite [5] observes that such transformations are tedious and 
may reduce readability of the grammar, or generate a grammar that is not exactly 
equivalent to the original. However, a parser generator accepting a wider class of 
grammars evades many of these disadvantages by simply avoiding the need to 
transform the grammar. 

This paper discusses a one-symbol look-ahead parser employing two stacks as a 
practical replacement for the LR parsing engine. The engine is based on a 
deterministic two-stack machine [6] and other two-stack (bottom-up) parsers [3, 

7, 8]. A parser construction method for the two-stack machine which produces 
efficient, deterministic parsers for a broad class of grammars properly including 
LR(k) grammars is presented. For non- LR(k) grammars, the parser can defer 
parsing decisions while an arbitrary sequence of input symbols is processed. 
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Unbounded forward parsing activity is converted into non-terminals and is not 
repeated. This allows the parsing of a class of non- LR(k) grammars using a single 
(terminal or non-terminal) symbol look-ahead. 

Without formal proof, it is asserted that the generated parsers preserve the 
desirable properties of LR parsing, namely acceptance of a broad class of practical 
grammars, error detection at the first invalid symbol (hence guaranteed 
termination) [8] and O(n) parsing efficiency (both time and space). 

Section 2 introduces the terminology and notation used throughout the paper. 
Section 3 introduces an example that highlights some of the deficiencies of LR 

parser construction. Section 4 examines the two-stack parsing process and 
Section 5 presents the basic parser construction. Section 6 extends the parser 
generator for increased generality Results are presented in Section 7 and 
conclusions are offered in Section 8. 

2. Terminology 
Formally, a context-free grammar is a tuple G = N, T, P, S where N and T are 
disjoint sets of, respectively, non-terminal and terminal symbols (hence N  T = ), 
P is a finite set of productions, and S  N is the goal symbol. V = N  T is defined 
as the vocabulary of the grammar. A production is a pair, written A  α, where 
A  N and   V*. The following conventions are used in this paper:  

 S, A, B, C …  N 

 … X, Y, Z  V 

 , ,  …  V* 

 a, b, c, …  T 

 … , x, y, z  T* 

The notation, , represents an empty sequence and the length of a sequence  is 
||, hence || = 0.  

The relation , pronounced “directly produces”, is defined on V* such that 
A   where A    P. The relation closures * and +, both pronounced 
“produces”, are used to define the sentential forms, { | S * }, of the grammar 
G including the (probably infinite) language generated, L(G) = {x | S + x}. 

3. An exercise in parsing 
Backus-Naur form (BNF) is a notation [9] describing the productions of a grammar. 
BNF is a small language that provides parsing problems for conventional parsing 
technologies. 

The grammar G1 (Figure 1) is a natural syntax definition of BNF notation without 
options in the right-hand side of productions. The language L(G1) = BNF is used 
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as the primary language example in this paper. In grammar G1, left recursion is used 
to describe a non-empty sequence S of productions. Each production P is a 
sequence n ::= R where R is a possibly empty sequence of terminal t and non-
terminal n symbols. A typical parsing system will distinguish terminal and non-
terminal symbols in a separate lexical analysis phase.  

An attempt to build a LALR(1) or LR(1) parser from this grammar fails, reporting 
a shift/reduce conflict. For some grammars, resolving such a conflict in favor of the 
shift action effectively disambiguates the grammar [10]. This strategy fails to 
produce a BNF parser based on G1 because G1 is not (suitably) ambiguous. BNF, 
though not strictly a programming language, is a simple and relevant language 
which shares characteristics with many computer languages. The failure of LR(1)  
parser generation for G1 is disappointing given the expectations built up in the 
literature:  

 “Most unambiguous grammars for programming languages are SLR(1) – 

hence LALR(1) and LR(1) – in the form in which they are originally 

written.” [11]  

 “This class of grammars [LR(1)] has great importance for compiler 

design, since they are broad enough to include the syntax of almost all 

programming languages, yet restrictive enough to have efficient parsers 

that are essentially DPDA's.” [6]  

 “Theoretically, LR(k) parsers are of interest in that they are the most 

powerful class of deterministic bottom-up parsers using at most k look-

ahead symbols. … if a grammar, G, can be parsed by any deterministic 

bottom-up parser using k look-ahead symbols, a LR(k) parser can be built 

for G.” [12]  

(1) S  S P 

(2) S  P 

(3) P  n ::= R 

(4) R   

(5) R  R n  

(6) R  R t 

Figure 1. Numbered productions of grammar G1 

More precisely, it is well known that all, and only, the deterministic CFL's have 
LR(1) grammars [6] While parsers can be developed for a wide class of languages, 
but they are not always based on a grammar that relates naturally to the semantics. 
Knuth [4] made it clear from the start that:  

“… LR(k) is a property of the grammar, not of the language alone. The 

distinction between grammar and language is extremely important when semantics 

is being considered as well as syntax.” 

BNF is an example of such a language. BNF is a regular language (RL), so 
L(G1) RL  DCFL and can be described by the equivalent regular expressions 
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in Figure 2. From the latter regular expression, G2  LR(1) where L(G1)  L(G2) 

(see Figure 3) can be constructed.  

(n ::= (n | t)*) +  n ::= (n | t)* (n ::= (n | t)*)*  

  n ::= ((n | t)* n ::=)* (n | t)* 

Figure 2. Regular expressions for BNF. 

 

S  P R  

P  n ::= | P R n ::=  

R   | R n | R t  

         Figure 3. Grammar G2  LR(1) and L(G2)  BNF. 

 

The link between the syntax and the semantics of G2 is less obvious than with G1: 
namely, each R is associated with the last n ::= in the preceding P. Grammar G2 is 
arguably a less natural expression, albeit an equivalent, of the grammar for BNF. 

A language designer may also alter the language as well as the grammar to suit a 
class of parser generator, e.g. by adding terminators and/or separators [13, 14] as 
in grammars G3a, G3b and G3c (Figure 4). This syntactic notation is reminiscent of 
statement syntax in programming languages such as Algol-[9], C [15], Pascal [ 61 ], 

Modula-2 [17], Modula-3 [18], Ada [19, 20], etc. It is also argued that such 
notation aids error recovery and is simply good language design practice. Other 
languages, e.g. BCPL [21] and Haskell [22, 23], adopt this solution but try to use 
layout to mask the consequences.  

 S  S ; P | P S  S P | P S   S semiopt  

P  n ::= R P  n ::= R ;  S  S ; P | P  

R   | R n | R t R    | R n | R t P   n ::= R  

    R   | R n | R t  

    semiopt   | ;  

 G3a: separator G3b: terminator G3c: separator/terminator 

Figure 4. Grammars for BNF with terminators and/or separators. 

 

Since G1 cannot be parsed using LR(1) parsers, the more general LR(k) techniques 
can be considered. This immediately meets with success since G1LR(2). An 
experienced language design could manipulate the grammar to produce grammar 
G4a  LR(1) (Figure 5) by treating n ::= as the single lexical item, lhs. Alternatively, 
using the forward context capabilities of a lexical analysis tool such as [ 42 , 25], 

the symbol n followed by ::= can be distinguished from n followed by some other 
symbol, before it reaches the parser.  
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A general parser generator could allow the separation of a language into lexical and 
syntactic elements as a matter of style or taste rather than necessity. A 
comparison of G4a with G2 suggests that the lexical/syntactic division can be 
important in the preservation of semantic structure during grammar development. 
Grammar G4b (Figure 5) for Algol-60 BNF BNF [9] is based on another 
lexical/syntactic separation and is as “natural” as G1. Unfortunately, G4b is not 
LR(2) nor even LR(k); from such a starting point, a lexical solution to the parsing 
problem may be more difficult to discover.  

The essence of this difficulty is that LR grammars have poor closure behavior under 
homomorphism [26,6] and substitution with regular expressions. Syntactic 
difficulties detected in parser generation can be treated as semantic issues or 
transferred to the lexical analyzer. The limited capabilities of most lexical analyzers 
and the increased costs (space and/or time) diminish the applicability of the latter 
strategy. The two-stack parser generator presented in this paper is less sensitive 
to this division of responsibility between the lexical analysis and parsing modules.  

Grammars G5a and G5b (Figure 6) represents grammars that can be parsed with a 
two-stack mechanism where L(G5a)  L(G5b)  BNF. LR(1) parser generators, 
working exclusively with terminal-symbol look-ahead fail for G5a and G5b. With G5b, 
the sequence R n can be derived from either R or R L resulting in a non-
deterministic parser. Further, the LR parser cannot reverse a derivation step, 
P L  L ::= R L, as the trailing L would be overwritten in the parsing engine. This 
illustrates the differences between LR parsing and the two-stack technique. By 
using non-terminal look-ahead, the two-stack parser can reverse both G5b 
derivation sequences:  

 

1.  P L ::= …  L ::= R L ::= …  L ::= R n ::= … 

2.  P …   ::= R …  L ::= R n …   L := R n n … 

 S  P S | P S  S P | P  

 P  n ::= R  P  L ::= R  

 R   | R n | R t  R  | R n | R t  

  L  n  

 Grammar G5a  Grammar G5b  

Figure 6. BNF grammars for two-stack parsing. 

 

 S  SP | P S  SP | P  

 P  lhs R  P  N ::=  

 R   | R n | R t  P   P N | Pt  

  N  < C >  

  C  c | C c  

 Grammar G4a  LR(1). Grammar G4b  LR(k).  

              Figure 5. Alternate syntax/lexical separations. 
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The technique described in Section 5 develops a parser using two-stack automata 
via a construction generalized from LR parser generation. The parser generator 
presented fails for G1, but succeeds for G5a, G5b and G6 (Figure 7). Each of these 
grammars might be described as natural relative to G2. Grammar G6, like G4b, is a 

BNF grammar without empty productions, and is the basis for the example two-
stack BNF parser developed in Sections 4 and 5.  

(1) S  S P  

(2) S  P  

(3) P  n ::=  

(4) P  P n  

(5) P  P t  

 
Figure 7. Grammar G6 with numbered productions. 

 

The parser generator described below is more general than the LR(1) algorithm and 
more practical than for the deterministic regular parsable (DRP) grammars [8]. The 
two-stack parser is simpler than parsers for other developments from LR(1), e.g. 

LR(k) and LR(k, t) [4], LRR [26, 5], LAR(m) [28] and DRP.. Figure 8 shows the 
capabilities of the parsers for the BNF-describing grammars given above.  

 G1 G2 G4a G4b G5a G5b G6 

LR(1)        

LR(2)/LR(k)        

Two-stack        

Figure 8. Grammar class membership. 

4. A Two-Stack Parser 
The two-stack parser has a left-stack containing integer-subscripted symbols and 
a right-stack containing symbols. The set of symbols, V, comes from a grammar and 
the integers from the set, K, of node identifiers from the parser construction. The 
stacks are delimited by a special  symbol and are illustrated below with stack-
tops toward the center.  

The parser has four actions:  

 Shift i where i  K, pops a symbol, X, from the right-stack and pushes 

the subscripted symbol, Xi, into the left-stack. Pictorially:  

left stack right stack  left stack right stack  

0 … Yj    X   shift i  0 … Yj Xi      

 Reduce    pops , an annotated version of , from the left-stack 

and pushes into the right-stack. The notation Reduce n + m is used for 

Reduce A   where Pn = A   and m = ||, or simply Reduce n 

when  =  (m = 0).  
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left stack right stack  left stack right stack 

0 … XI      reduce n + m  0 … X  A    

 Accept causes successful termination.  

 Error causes failure termination.  

The parser uses the subscript and symbol at the top of the stacks to access the 
parse table, a function PT: K × V  action, to determine the action to be taken at 
each step. This table is represented with Error entries left blank, e.g. Figure 9 
shows a parser table derived from grammar G6. 

Node  n t ::= S P 

0  S3   S2 S1 
1 R2 S4 S5   R2 
2 Acc S3    S6 
3    S8   
4 R4 R4 R4 S7  R4 
5 R5 R5 R5   R5 
6 R1 S4 S5   R1 
7 R3 R3 R3   R1 
8 R3 R3 R3    

Figure 9. Parse table for grammar G6. 

 

Initially, the left-stack holds the 0 symbol and the right-stack holds the input 
string followed by the  marker. Valid input is accepted in a state where the left-
stack contains the goal symbol and the right-stack is empty. 

  left stack right stack 

   0  input   action …  

   left stack right stack 

  action   0 Si     Accept 

 

With invalid input, the parser reaches an Error action. The complete sequence of 
parser actions for a short string from L(G6) is shown in Figure 10. 

Provided the left-stack is correctly conditioned for each reduce (as in LR parsing), 
partial correctness of the parser can be shown by reverse induction. At termination, 
the stacks contain a  delimited sentential form. Shift preserves a sentential form 
in the stacks, hence it can be ignored. Reduce is effectively the inverse of ; a 

reduce action resulting in a sentential form necessarily starts from a sentential 
form. A successful parse, a sequence of shift and reduce actions terminating with 

accept, must commence with a sentential form in the stacks. Responsibility for 
ensuring that the parser moves forward from an accessible parser state rests with 
the parser construction method.  
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left stack right stack action  

0 n ::= n t n ::= n  Shift 3  

0 n3 ::= n t n ::= n  Shift 8  

0 n3 ::=7 n t n ::= n  Reduce 3  

0 P n t n ::= n  Shift 1  

0 P1 n t n ::= n  Shift 4  

0 P1 n4 t n ::= n  Reduce 4  

0 P t n ::= n  Shift 1  

0 P1 t n ::= n  Shift 5  

0 P1 t5 n ::= n  Reduce 5  

0 P n ::= n  Shift 1  

0 P1 n ::= n  Shift 4  

0 P1 n4 ::= n  Shift 7  

0 P1 n4 ::=7 n  Reduce 3  

0 P1 P n  Reduce 2  

0 S P n  Shift 2  

0 S2 P n Shift 6  

0 S2 P6 n  Shift 4  

0 S2 P6 n4  Reduce 3  

0 S2 P  Shift 6  

0 S2 P6  Reduce 1  

0 S  Shift 2  

0 S2  Accept  

Figure 10. Parsing n ::= n t n::= n with grammar G6. 

 

5. Parse table construction  
A parser is constructed from a grammar augmented with the parser symbols   T 

and S  N used in a new production P0 = S   S  P. The following relations 
based on the grammar are defined:  
FRONT(A)     =    FRONT(A) = {X | A  X}  

FRONT0(X)    =   {X}  

FRONT()         =       

FWD+()   =     {X |  + X} 

FWD*()   =     {X |  * X}  

                        , k = 0 

FIRSTk()   = ,  =    =  

                   x,  *   x  FIRSTk-1() 

An item is a tuple <n, , , >, alternatively represented as A    ; , where 
Pn = A    P,  = , and   V* is an element of a (finite) set of contexts. 
Informally, an item reads: having found , look for  and (an initial segment of) 
context  before reducing  to A. An initial item has the form A   ;  or 

<n, , , > where Pn = A  . A final item has the form A   ;  or 

<n, , , >. The construction described in this section maintains  = ; the 
construction in Section 6 produces non-empty values of . Items with differing 
contexts may be displayed as a group, i.e: 
        A    ; , …, A    ;   A    ; , …,  
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Initially, a directed graph (digraph) is constructed where nodes are sets of items 
and edges are labelled with symbols. The nodes in the digraph are uniquely 
numbered. The initial node is the singleton item set, 
I0 = {S    S; }  {<0, , S, >}. The digraph for G6 is shown in Figure 11.  

8

0

23

45

1

6

7

P

nt

::=
S

t n

n

n
::=

 
Figure 11. Digraph for grammar G6. 

 

The parser table develops from the digraph. Each edge in the graph represents a 
shift action in the table. The reduce and accept entries in the table are based on 
the final items at a node. The node items for grammar G6 are shown in Figure 12.  

 

5.1 Digraph Construction  
Each node is uniquely numbered and represents a set of items similar to basis items 
in LR parsing literature. The digraph is constructed by starting from node I0 and 
constructing edges and nodes until the reachable nodes have been identified.  

Node  Node items 

0  S    S;  

1  S  P ; , P , P n 

  P  P  n; , P , P n, n, t 

  P  P  t; , P , P n, n, t 

2  S   S ;  

  S  S  P; , P , P n 

3  P  n  ::=; , P , P n, n, t 

4  P  n  ::=; , n, t 

  P  P n ; , P , P n, n, t 

5 P  P t ; , P , P n, n, t 

6  S  S P ; , P , P n 

  P  P  n; , P , P n, n, t 

  P  P  t; , P , P n, n, t 

7  P  n ::= ; , P , P n, n, t 

8  P  n ::= ; , n, t 

Figure 12. Item sets of nodes from grammar G6. 
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A node In has a (possibly empty) set of shift symbols, SS(In). Two groups of symbols 
contribute to the shift symbols. Basic shift symbols, BS(In), are derived from non-
final items and are the symbols that must be shifted by the parser to progress 
towards a reduce action. Reduce conflict symbols, RC(In), are symbols which lead 
to multiple reduce entries, i.e. a reduce/reduce conflict, in an LR parser generation. 
Two-stack parser construction treats these symbols as shift symbols.  

In two-stack parsing, the symbols in RC(In) are shifted with the expectation that 
the conflict will be resolved once a non-terminal is recognized. RC(In) is the set of 
symbols which appear in more than one reduce symbol set for an item group, 
RS(In, n, , ). Consider a node containing two final items, <i, , , >, 

<i, , , >, <j, , , >  Ik, where  * X   Z … and  * Y   Z …. The 
parser generator avoids potential parse table conflicts:  

            {reduce i, reduce j}  PT(Ik, W) 

 where W  FWD*(Z)  RS(Ik, i, , )  RS(Ik, j, , ) ) 

 hence FWD*(Z)  RC(Ik)  SS(Ik) 

 

As a result, items X   Z …;   and Y   Z …;   and their derivatives are 
included in the node closure. The result is a parser which tries to recognize either X 
or Y starting with Z. Having reduced X or Y onto the top of the right-stack, the 
parser is able to decide between reduce i and reduce j.  

The same strategy deals with conflicts between shift and reduce actions. The 
presence of empty productions, productions of the form A   , in the grammar 
requires that non-final items be included in the definition of RC.  

             SS(In) = BS(In)  RC(In) - {}  

             BS(In) = {FRONT*() | <i, , , >  Ii}  

             RC(In) = {RS(In, i, , )  RS(In, j, , ) | <i, , ><j, , > 

             RS(Ii, n, , ) = {FWD*( ) – FRONT*() | <n, , , >Ii}  

 

Every digraph node has a labelled edge leaving it for each shift symbol associated 

with that node, hence:  

             Edges(In) = {<In, X, Next(In, X)> | X  SS(In)}  

             Next(Ii, X) = {<n, , , > | <n, , X , >  Close(Ii)}  

 

Each node has a (possibly empty) set of closure items. These are computed by 
recursively extending the set of items that may be applicable in the (local) parsing 
position represented by the node. A complete set of closure items is identified, prior 
to the relevant items being selected, as this simplifies development of item 
contexts.  
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  Close(In) = In  Relevant(SS(In), Derive+(In))  

  Derive(Ii)  =      CI(A, ), <n, , A, >  II   *     Context(, ) 

               CI(A, ), ), <n, , A, A>  II    *  

  CI(A, ) = {<n, , , > | Pn = A  } 

  Context(, ) =  ,  =  

                     ,    =  b    N*  b  FIRST1() 

  Relevant(R, Q) =  i, i = A    X ;   Q  X  R 

         i, i = X  ;   Q  X  R 

 

The Derive function adds initial items which may be applicable in the parsing 
position represented by an item set Ii. Closure items derive from all non-terminals 
immediately proceeded by the mark () in the remaining item right-hand sides and 
contexts. Once these items, with their contexts, have been derived, Relevant items 
are selected. Final items lead to reduce entries in the parse table (see below), non-
final items contribute to the items of other nodes (via Next in the edge 
construction). Figure 13 shows the digraph construction for grammar G6. Figure 14 
shows a computed closure for node I1 of grammar G6 and indicates which items 
are relevant to parser construction.  

For a given grammar, the set of possible items is finite since all items 

A     ;  a are constructed from a finite production A     P where P is 
a finite set, and a m-bounded context  a V* ×T where 

|| < m = max{|| | A    P}. Since the items are finite, the nodes are finite and 
a finite algorithm for digraph construction exists.  

5.2 Filling the Parse Table 
Parser generation is completed by filling in the parse table, PT. A table entry is 
determined for each node Ii and symbol X.  

               Shift j,      <Ii, X, Ij>  Edges(Ii) 

PT(Ii, X) =     Reduce n + |, <n, , , X >  Close(Ii) 

            Reduce n + |,      X  RS(Ii, n, ) - SS(Ii) 

RS(Ii, n, ) = {FWD+() | <n, , , >  Close(Ii)}  

 

The single instance of Reduce 0 (at PT(Next(0, S), ) in the table) is replaced with 

Accept. This is consistent with the previous definition of Accept for the two-stack 
parser. Undefined entries are interpreted as Error. A table with at most one entry 
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in each table position is a deterministic parser. This is the case for a significant 
class of grammars including LR(1) as is shown informally in Section 6.  

 

Node Node items Closure items Edges  

0 S    S;  S   S P; , P , P n <0, P, 1> 

  S   P; , P , P n <0, S, 2>  

  P   n ::=; , P , P n, n, t <0, n, 3>  

  P   P n; , P , P n, n, t   

  P  P t; , P , P n, n, t   

1 S  P ; , P , P n P  n ::=; , n, t <1, n, 4>  

 P  P  n; , P , P n, n, t  <1, t, 5>  

 P  P  t; , P , P n, n, t    

2 S S ;   P   n::=; , P , P n, n, t <2, n, 3>  

 S  S  P; , P , P n P   P n; , P , P n, n, t <2, P, 6>  

  P   P t; , P , P n, n, t   

3 P  n  ::=; , P , P n, n, t  <3, ::=, 8>  

4 P  n  ::=; , n, t  <4, ::=, 7>  

 P  P n ; , P , P n, n, t    

5 P  P t ; , P , P n, n, t    

6 S  S P ; , P , P n P   n::=; , n, t <6, n, 4>  

 P  P  n; , P , P n, n, t  <4, t, 5>  

 P  P  t; , P , P n, n, t    

7 P  n ::= ; , P , P n, n, t    

8 P  n ::= ; , n, t    

Figure 13. Digraph and closure from grammar G6. 

 Items Relevant  

node I1 S  P ;, P , P n   

 P  P  n; , P , P n, n, t   

 P  P  t; , P , P n, n, t   

Derive(I1)  P  n ::=; , n   

 P   P n;, n   

 P   P t; , n   

 P   n ::=; t   

Figure 14. Closure construction for grammar G6, node I1. 
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6. Extended two-stack parsing: using linear backup  
The parser generator above will fail to produce a deterministic parser when a node 
contains items such that:  

                                       A    ;   

                                      C    ; X   

 

where  * X …. The algorithm fails with a shift/reduce conflict when  + X … 

and a reduce/reduce conflict when  = X …. 

This occurs in grammar G7a (Figure 15), a LR(0, 2) grammar [4]. The basic two-stack 
parser generator, described in Section 5, produces a parser (Figure 16) from the 
modified G7b grammar. The grammar transformation from G7a to G7b introduces a 
form of backup. The amount of backup introduced is proportional to the length of 
the input so parsing remains efficient.  

When applicable, a comparable transformation is performed automatically by the 
parser generator. The following modification to the parser generator adheres to the 

Node  a b c d S A B C C1 C2 

0  S4    S3 S1 S2    

1   S7      S5 S6  

2   S10      S8  S9 

3 Acc           

4   S12      S11 R3 R4 

5   S13 R7        

6    S14        

7   R6 R6        

8   S15  R8       

9     S16       

10   R6  R6       

11   S17 R7 R8       

12   R6 R6 R6       

13   R5 R5        

14 R1           

15   R5  R5       

16 R2           

17   R5 R5 R5       

Figure 16. Parser table for grammar G7b. 

 S  A C c | B C d S  A C1 c | B C2 d 

 A  a A a 

 B  a B a 

 C  C b | b C C b | b 

 C1  C 

 C2  C 

 Grammar G7a Grammar G7b 

Figure 15. LR(0, 2) grammars. 
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policy of extending node closure allowing the parser to shift conflicting symbols 
until additional input indicates which reduce action is appropriate.  

For grammar G7a, immediate context is insufficient information on which to base 
parsing decisions. With extended context, a decision can be reached. The primary 
change to the parser generator is the additional Extend step in the new closure 
construction. By replacing Close with Close in Next, a parse table (Figure 17) can 
be constructed.  

            Close(In) = {Extend(i, SS(In)) | i  Close(In)} 

            Extend(i, SS) =      AX    X; ,     i = A   ; X  XSS 

                                          i,                                  otherwise 

 

Figure 18 shows the nodes and the closure for the digraph nodes where Extend has 
an impact. Though this mechanism may introduce items which appear to be context 
sensitive, all the reduce actions are based on the context free rules of the grammar. 
The generator uses items with extended context to develop determinism during 
parsing.  

This construction may produce redundant or unreachable nodes, e.g. nodes 6, 8, 11 
and 13 in Figure 17 cannot be used since a sequence of b's will have already been 
recognized as (or reduced to) a C when the parser reaches nodes 1, 2, 5 and 7. The 
set of items constructed by Extend is finite since each item <n, , , > 

introduced by Derive can be Extended to at most || different items. Combined with 
node merging, this construction produces parsers comparable to other published 
techniques [29]. 

Node  a b c d S A B C 

0  S4    S3 S1 S2  

1   S6      S5 

2   S8      S7 

3 Acc         

4   S10      S9 

5   S11 S12      

6   R6 R6      

7   S13  S14     

8   R6  R6     

9   S15 R3+1 R4+1     

10   R6 R6 R6     

11   R5 R5      

12 R1         

13   R5  R5     

14 R2         

15   R5 R5 R5     

Figure 17. Parse table from grammar G7a. 
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         7. Discussion  

The parser construction technique described above is more complex than LR 
parser construction. Extra effort goes into constructing items, some of which 
eventually lead to non-terminal look-ahead in the parser, while others are not 
Relevant and are subsequently discarded. The closure items in nodes 1 and 6 of 
Figure 12 are examples of items that lead to non-terminal look-ahead.  

The result of this extra work is the ability to resolve some of the conflicts that arise 
in LR parser generation. While the amount of effort has not yet been quantified., 
the overhead is anticipated to be relatively small in general and the method is 
expected to be practical.  

7.1 Other Example Languages  
Grammar G8a (Figure 19) is a relatively natural grammar which defines a series of 
data records with option fields. A parse table and its derivation from G8a are shown 
in Figures 20 and 21, respectively. Like BNF, L(G8a) is a regular language, and hence 
a DCFL. In practice, the language is usually changed for LR parsing: either using 
a field terminator (rather than an initiator), or adding semantic constraints to an  
unordered syntax. Grammars G8b and G8c (Figure 19) are LR grammars for this 
language. 

 

 

 

  

 

S   | S R                S  | S R                          S   | S R  

R  hdr f1 f2 f3         R  hdr F1                         R  hdr | F1 | F2 | F3  

f1   | sep data1     F1  F2 | sep data1 F2        F1  hdr sep data1  

f2   | sep data2      F2  F2 | sep data2 F3       F2  hdr sep data2 | F1 sep data2  

f3   | sep data3     F3   | sep data3              F3  hdr sep data3 | F1 sep data3 | F2 sep data3  

 

Grammar G8a      Grammar G8b                      Grammar G8c 

Figure 19. Syntax records with optional fields. 

 

Node Items Close 

4 A  a ;C c A C  a  C; c  

 B  a ;C d  A C  a  C; d  

  C   C b; b, c, d  

  C   b; b, c, d  

9 A C a C ; c A C  a C ;c  

 B C a C ;d B C  a C ; d  

 C  C  b; b, c, d C C  b; b, c, d  

Figure 18. Close for selected nodes from the G7a digraph. 
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Node Node items Closure items  

0 S S;  S ; , R , R hdr  

  S   S R; , R , R hdr  

1 SS ;  R   hdr f1 f2 f3; , R , R hdr  

 S  S  R; , R , R hdr  

2 S  S R ; , R , R hdr   

3 R  hdr  f1 f2 f3; , R , R hdr f1 ; f2 f3 , f2 f3 hdr  

  f1  sep data1; f2 f3 , f2 f3 hdr  

  f2  sep data2; f3 , f3 hdr  

  f3  sep data3; , R , R hdr 

4 R  hdr f1  f2 f3; , R , R hdr f2 ; f3 , f3 hdr  

  f2  sep data2; f3 , f3 hdr  

  f3  sep data3; , R , R hdr  

5 f1  sep  data1; f2 f3 , f2 f3 hdr   

 f2  sep  data2; f3 , f3 hdr   

 f3  sep  data3; , R , R hdr   

6 R  hdr f1 f2  f3; , R , R hdr f3 ; , R , R hdr  

  f3  sep data3; , R , R hdr  

7 f2  sep  data2; f3 , f3 hdr   

 f3  sep  data3; , R , R hdr   

8 f1  sep data1 ; f2 f3 , f2 f3 hdr   

9 f2  sep data2 ; f3 , f3 hdr   

10 f3  sep data3 ;, R , R hdr   

11 R  hdr f1 f2 f3 .;, R , R hdr   

12 f3  sep  data3; , R , R hdr   

Figure 21. Nodes and items for grammar G8a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Node  sep hdr data1 data2 data3 S R f1  f2 f3 

0 R1  R1    S1 R1     

1 Acc  S3     S2     

2 R2  R2     R2     

3 R4 S5 R4      S4  R4 R4 

4 R6 S7 R6        S6 R6 

5    S8 S9 S10       

6 R8 S12 R8     R8    S11 

7     S9 S10       

8 R5 R5 R5        R5 R5 

9 R7 R7 R7         R7 

10 R9  R9     R9     

11 R3  R3     R3     

12      S10       

Figure 20. Parse table for grammar G8a. 
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Grammar G9 (Figure 22) describes BNF for context sensitive grammars (CSGs), 

where each rule is expected to start on a new line. This use of layout in the syntax 
of a language often leads to parsing problems.  

S   | S R  

R  LHS ::= RHS eol  

LHS  SS  

RHS  SSopt | RHS eol SSopt  

SS  id | SS id  

SSopt   | SS  

Figure 22. Grammar G9. BNF with layout for CSG productions. 

A final example is drawn from compiler construction. In (revised) Pascal [16] 
statements are separated or terminated by semi-colons and if statements 
complicate the syntax by having optional else parts. Grammar G10a (Figure 23) is a 
stylized unambiguous grammar describing this syntax. Inexperienced programmers 
may have problems learning where to put semi-colons in Pascal so a parser based 
on G10b is more useful in a practical compiler.  

The error productions present problems for the LR parser generators but are 
acceptable to the two-stack parser generator. Figure 24 shows the number of 
states/nodes in parsers based on these grammars.  

7.2 Choosing a Context Construction  
The design of function Context determines the grammar class producing 
deterministic parsers based on the above parser construction. Our goal is to 
develop a terminating parser generator for a broad and decidable class of 
grammars. Since membership of LR(k), LRR and DRP are all undecidable, 

Parser G7a G7b G8a G8b G8c G9 G10b G10a 

LALR(1) - - - 15 16 - 19 - 

Two-stack - 18 13 15 16 18 33 37 

Extended two-stack 16 18 13 15 16 18 33 37 

Figure 24. Parser state/node size. 

 BS  begin SL sopt end  BS  begin SL sopt end  

 SL  ST | SL semi ST  SL  ST | SL sreq ST  

 ST  MS | US  ST  MS | US  

 MS  stmt | BS | if MS else MS  MS  stmt | BS | if MS serr else MS  

 US  if ST | if MS else US  US  if ST | if MS serr else US  

 sopt  semi |   sopt  semi |   

  sreq  semi |   

  serr   | semi  

 Grammar G10a Grammar G10b  

Figure 23. Stylized Pascal syntax. 
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considerable care is required. Informally, the context construction above has the 
required properties:  

 item contexts at a node include contexts for LR items and states reached via 
the same symbols sequence;  

 no context produces an empty string;  
 the set of contexts is (practically) finite.  

Other context constructions were considered and discarded. These are outlined in 
Figure 25. 

Others have used or considered non-terminals in the look-ahead during parser 
construction. The LR(k) construction of Ancona et. al [30] is of considerable 
interest and deserves further investigation.  

Parser generation can be extended using other context constructions. Parsers 
construction can use restricted regular expressions in item contexts. Closure for a 
left recursive symbols is treated specially, i.e. when A + A  via rules A  A  

and A   then Derive(Ii) where B     A    Ii, contains the items:  

               A    A ; *   

              A    ;  *  

where   Context(, ). When  * , the grammar is ambiguous so parser 
construction will fail. The function Next in the Edge construction is extended to 
treat a compound context as an equivalent item group:  

             A   ;( | … | )*   

   A   ;,  ( | … | )* ,…,  ( | … | )* 

 

In the digraph construction for grammar G1 (Figure 26), node 6 includes the final 
item P  n ::= R ; P*  which is interpreted as the equivalent item groups:  

              

Context construction Problems 

Context(, ) =   infinite contexts and/or nodes  

Context(, ) = 
,  =  when  +  may not include 

LR(1) , otherwise 

Context( , X ) =   X 
when  X +  may not include 

LR(1) 

FOLLOW  
error detection may be delayed 

(works for G1)  

Context( , ) =  
,  =  too many nodes and little 

advantage over the Context 
function presented in Section 5.1  x, x  FIRST1() 

Contextk(, ) = 
,  =   too many nodes (but includes 

LR(k))  x, x  FIRSTk() 

Figure 25. Alternative item context constructions. 
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                       P  n ::= R ; P* 

                     P  n ::= R ;, P+   

                     P  n ::= R ;, P P* 

The Closure items for node 6 include (the Relevant part of) 

CI(P, P* ) = {P   n ::= R; P*  since n  SS(I6). The resulting parse table is 
shown in Figure 27.  

Node  n t ::= S P R 

0  S3   S1 S2  

1 Acc S3    S3  

2 R2 R2    R2  

3    S5    

4 R1 R1    R1  

5 R4 R4 R4    S6 

6 R3 S7 S8   R3  

7 R5 R5 R5 S5  R5  

8 R6 R6 R6   R6  

Figure 27. Parser table for grammar G1. 

A parser created in this manner may use a large stack during parsing. Replacing the 
grammar rule A  A with a rule A  A (e.g. G1 becomes G5b) may achieve the 
same result and has the advantage of requiring an implementation choice with the 
acceptance of its consequences.  

The use of regular expression in item contexts relates to LRR parsing [26]. The 
basic technique described here is not regarded as sufficiently general to justify 
implementation. Several extensions are under investigation.  

 Node Node items Closure items Edges  

0 S S;  S  S P; P*  <0, S, 1>  

  S  P; P*  <0, P, 2>  

  P  n ::=R; P*  <0, n, 3>  

1 SS ;  P  N ::= R; P*  <1, P, 4>  

 S  S  P; P*   <1, n, 3>  

2 S  P ; P*    

3 P  n  ::= R; P*   <3, ::=, 5>  

4 S  S P ;P*    

5 P  n ::=  R; P*   R ; P* , n, t <5, R, 6>  

  R  R n; P* , n, t  

  R  R t; P* , n, t  

6 P  n ::=R ;P*   P . N ::=R; P*  <6, n, 7>  

 R  R  n; P* , n, t  <6, t, 8>  

 R  R  t; P* , n, t    

7 R  R n ; P* , n, t  <7, ::=, 5>  

 P  n  ::=R; P*    

8 R  R t ; P* , n, t   

Figure 26. Digraph construction for grammar G1. 
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7.3 Parser Generator Performance  
Initial tests with small near- LR(1) grammars produced parsers comparable in size, 
i.e. number of states/nodes and number of table entries, to LR parsers. The parser 
produced for G8a is smaller than a LR parser for the same language. In the observed 
cases, the technique appears to scale better than LR(k). 

Practical parsers can be produced by adapting optimization techniques developed 
for LR parsing [31]. Practical LALR(1) construction can merge compatible LR(1) 

nodes during [32] or after [1] parser construction. The parse table for G6 (Figure 9) 
can be compacted by creating a default reduce action for relevant nodes (i.e. all 
except 0, 2, 3) then merging nodes 7 and 8.  

The controlled use of ambiguous grammars [10] allows small and efficient parsers 
to be constructed from compact language specifications. This technique, like the 
elimination of (semantically null) unit productions, appears to be applicable in two-
stack parsing.  

There is no problem with a parser generator producing a full LR(1) parser before 
merging states. Holub [32] indicates that the primary disadvantage of an LR(1) state 
machine is that is is typically twice the size of a corresponding LR(0) machine. 
Spector [33] points out that minimal-state full LR(1) tables are not significantly 
larger than LALR(1) tables but does not address the issue of whether the class 
of LR(1) grammars is practically larger than the LALR(1) grammars. Language 
designers tend to target LALR(1) acceptability rather than LR(1) parsers. Recent 
work by McPeak [34] and Chen and Pager [35] explores the effective 
implementation of LR(1) parsers and addresses the concerns noted earlier. 

The two-stack parser generator needs “correct” context information in the items of 
a node so that it can avoid shifting error (terminal) symbols. The avoidance of node 
merging during parser generation is a simple (perhaps conservative) way to ensure 
the preservation of the valid prefix property in the parser.  

7.4 Processing and Grammars  
LR(1) grammars have special properties in the two-stack parser construction. The 
following function maps each digraph node In to a LR(1) state:  
                       State(In) = {A    ;  | A    ;   In  FIRST1()}  

For each digraph node In, it is necessary that: 
                      BS(In)  RS(In) = RC(In) =  

or the corresponding LR(1) state is inadequate. Two-stack closure and edge 
construction, working on LR(1) item sets, produce the same result as the 
corresponding LR(1) constructions.  

For a LR(1) grammar, the terminal symbols associated with a particular reduce 
action at a node are the same as the LR(1) parser symbols at the corresponding 

S   | S R  

R  LHS ::= RHS eol  

LHS  SS  

RHS  SSopt | RHS eol SSopt  

SS  id | SS id  

SSopt   | SS  
Figure 22. Grammar G9  BNF with layout for CSG productions. 
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“state”. The two-stack parser construction produces extra reduce table entries 
where the LR(1) parser says “don't care” and this may produce extra nodes. 
Merging compatible nodes produces a parser with the same number of 
states/nodes. Typically, these extra entries allow a two-stack parser based on a 
LR(1) grammar to recognize any sentential form thus are applicable in incremental 
parsing [27].  

The two-stack construction algorithm is converted to LR(k) parser construction by 

replacing the Context function with the simpler Context  = FIRSTk The 
Contextk function mentioned in Section 7.2 lets the parser generator cover LR(k) in 
the same way as LR(1) is covered by the algorithm in Sections 5 and 6.  

8. Conclusions 
The two-stack parser can be regarded as a “drop-in replacement” for the LR 
parsing engine. Using LR(0), SLR(1), LALR(1) or LR(1)tables, the size and 
performance of the two parsing algorithms are the same. The two-stack parser has 
the advantage that it can be used with parse tables developed from a wider class 
of grammars.  

The outline above shows that the LR(1)grammars, and their subclasses, are 
included in the class of grammars accepted by this two-stack parser generator. 
Given a LR(1)grammar, there is little advantage in using the two- stack parser 
generator. Given a non- LR(1)grammar, this parser generator can help in several 
ways. Most obviously, this generator could produce the tables for a practical 
parser. Alternatively, by preserving non-terminals in the item contexts, the 
generator may provide better diagnostic support for grammar manipulation. This 

parser construction extends the class of grammars for which efficient one-symbol 
look-ahead parsers can be constructed and provides an alternative to LR(k) when 
LR(1) proves inadequate.  

The error handling capabilities of the parser and the parser generator deserve 
investigation. The error recovery mechanism used in YACC [13, 25] can be built 
into the two-stack parser, and the ability of the parser generator to resolve LR 
parser conflicts arising with grammars augmented for error handling can only be 
beneficial. More predictable error handling may be achieved through specific 
support in the parser generator.  

An unoptimized parser table accepts many sentential forms as input. This property 
is expected to prove practical in incremental parsing/compiling, language sensitive 
editing or anywhere a parser could find non-terminals in its input [27].  

The formal properties of grammar classes associated with the parser generator 
need to be identified, e.g. context and closure mechanisms described above 
construct parsers for a class of grammars properly including LR(k) for a given k. 
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Different context structures and closure mechanisms characterize different 
grammar classes.  
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